
Phys 460 
Describing and Classifying 

Crystal Lattices  



What is a “material”? 

2 

• Regular lattice of atoms 

• Each atom has a positively charged 
nucleus surrounded by negative electrons 

• Electrons are “spinning” 
→they act like tiny bar magnets! 

• Electrons don’t orbit like planets, but are distributed in space 

(“orbitals” or “Fermi sea”). 

• Neighboring spins and orbitals talk to each other and form 

patterns! 
 

^ crystalline 



Crystallography- Origins in geology 

• The atomic theory of atoms has long been proposed to explain sharp angles and flat planes 
(“facets”) of naturally occurring crystals. 

• Types of different crystal structures were categorized, and formed the foundation of the field of 
crystallography. 

• In 1848, French physicist (and crystallographer and applied mathematician) demonstrated that there 
were only 7 “types” of crystals, embodying 14 distinct “symmetries”. 

• This work was verified and greatly expanded upon in the 20th century with the advent of x-ray 
diffraction. (e.g. work W. Henry and W. Lawrence Bragg, 1913) 

Auguste Bravais 
1811-1863 
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Crystals- a mathematical description 

• A crystal is defined to be a repeating, regular array of atoms. 

• A proper mathematical description must account for what is 
repeating and how it is repeating. 

• Two parts treated separately: 
• The fundamental repeating unit is  

referred to as the basis. 

• How the basis repeats is specified by  

Identifying the underlying lattice.  

Crystal structure =  lattice  +  basis 
(or “Bravais lattice” + basis ) 



Bravais lattice 
• A Bravais lattice (what Simon simply calls a “lattice”) is a mathematical 

construct, designed to describe the underlying periodicity of a crystal. 

• There are two completely equivalent definitions: 
1. A Bravais lattice is a set of all points in space with position vectors, R, of the 

form 

 

 where a1, a2 and a3 are any three independent vectors, and ni. 

2. A Bravais lattice is an infinite array of discrete points with an arrangement 
and orientation which looks exactly the same at each point. 

 

• NB- Definition 2 is handy for first impressions, but definition 1 will 
form the foundation for our mathematical treatment. 

 

R = n1a1 + n2a2 + n3a3 
 



Properties of a Bravais lattice 

• Seemingly general, there are actually a finite set of possible Bravais 
lattices (14 in 3D), determined by the underlying symmetries (more 
on this later). 

• Quick inspection shows that not every lattice is a Bravais lattice! A 
good counterexample is the common honeycomb: 

 

 

 

 



Primitive vectors and unit cells 
• If one is looking at a Bravais lattice, it is possible to describe all points using the 

position vector R = n1a1 + n2a2 + n3a3. Here, the vectors ai are known as primitive 
lattice vectors and the integers ni are known as lattice indices. 

• In general, the repeating volume (area in 2D) in a crystal is known as the unit cell. 
For a Bravais lattice, the primitive lattice vectors  span the smallest possible 
volume, and the resulting unit cell is called the primitive unit cell. 

• Neither primitive basis vectors nor the primitive unit cells are unique! 

 

 



Properties of primitive unit cells 

• If every atom is described by R = n1a1 + n2a2 + 
n3a3, then one can show that every primitive 
cell has exactly one lattice point. 

• It follows that every primitive cell has exactly 
the same volume: v = 1/n, where n is point 
density. 

• One can always find a primitive cell by 
considering parallelepiped spanned by 
primitive basis vectors. 

• Another common choice is the Wigner-Seitz 
cell, created by bisecting the lines connecting a 
lattice point with its nearest neighbors. 

• Most symmetric cell, and volume closest to 
lattice point 



Bravais lattices in 2D 

cubic hexagonal oblique rectangular 

centered rectangular 



Example: the triangle lattice  
  (a.k.a. the hexagonal lattice) 

1
ˆaa x

2

3
ˆ ˆ

2 2

a a
 a x y

1 1 2 2
ˆ ˆn n R a a



3D Example: the simple cubic lattice 

 

1 1 2 2 3 3
ˆ ˆ ˆn n n  R a a a

1
ˆaa x

2
ˆaa y

3
ˆaa z



3D Example: the body-centered cubic (BCC) 

1 1 2 2 3 3
ˆ ˆ ˆn n n  R a a a

1
ˆaa x

2
ˆaa y

3
ˆ ˆ ˆ( )

2

a
  a x y z

OR 1
ˆ ˆ ˆ( )

2

a
   a x y z

2
ˆ ˆ ˆ( )

2

a
  a x y z

3
ˆ ˆ ˆ( )

2

a
  a x y z



3D Example: the face-centered cubic (FCC) 

1 1 2 2 3 3
ˆ ˆ ˆn n n  R a a a

1
ˆ ˆ( )

2

a
 a y z

2
ˆ ˆ( )

2

a
 a x z

3
ˆ ˆ( )

2

a
 a x y



 



Lattice with a basis 

• A Bravais lattice is a mathematical abstraction. To describe a real crystal 
lattice, one needs to dress the Bravais lattice with either a single atom, or a 
set of atoms. This repeating set of atoms is called the basis. 

• The vectors describing the positions of atoms in a basis, {ri}, are called basis 
vectors, and are conventionally presented in terms of fractional steps along 
the lattice vectors. 

• This allows one to 
• Use the same Bravais lattice framework to  
Describe non-Bravais lattices 
• To simplify discussion of complex Bravais lattice  
through use of larger conventional unit cells, with  
orthonormal lattice vectors 
• To describe crystals containing more than one  
atom type. 



Example: The honeycomb, using a basis 

• Though the honeycomb is clearly not a Bravais lattice, we can still 
describe it as a triangle lattice (which is Bravais) , using a two atom 
basis  



Example: the BCC alttice, using a basis 

• The BCC lattice is Bravais, but the primitive lattice vectors are not 
perpendicular. It is often desirable to use a cubic Bravais lattice, with 
a two atom basis. The repeating (non-primitive) unit cell is known as 
the conventional unit cell. 

1 1 2 2 3 3
ˆ ˆ ˆn n n  R a a a

Bravais lattice: 

1
ˆaa x 2

ˆaa y
3

ˆaa z

Basis: 

1 r 0

2 1 2 3

1
( )

2
  r a a a



Example: the FCC alttice, using a basis 

• The same conventional unit cell can be used to describe the FCC 
lattice, now with a 4 atom basis: 

1 1 2 2 3 3
ˆ ˆ ˆn n n  R a a a

Bravais lattice: 

1
ˆaa x 2

ˆaa y
3

ˆaa z

Basis: 1 r 0

2 1 2

1
( )

2
 r a a

3 1 3

1
( )

2
 r a a

4 2 3

1
( )

2
 r a a



Example: The diamond lattice 

Described as FCC lattice, with a 2-atom basis: 

2
ˆ ˆ ˆ( )

4

a
  r x y z

1 r 0

where a is the length of the conventional cubic cell. 
 
Note: It is equally well described as an FCC with an 
        8 atom basis (FCC basis plus the same vectors 
        offset by [a/4,a/4,a/4]). 



Sidebar: Coordination number 

• Each of the above three lattices is incredibly common, and 
characterize different classes of elements. What is the difference? 

• In many cases, the important difference is the number of nearest 
neighbors, which dictates how many bonds  each atom has. 

• The number of nearest neighbor bonds for a given crystal lattice is 
called the coordination number, and usually denoted Z. 

cubic, Z=6  BCC, Z=8  FCC, Z=12  diamond, Z=4  



Example: hexagonal close packed (hcp) 

• Simple hexagonal lattice, with a 2 atom basis 

• Represents closest approach of a series of hard spheres. 



Common motifs in diatomic materials 

 

Zinceblende (ZnS) 

Zn 

S 



Sidebar: Indexing cubic directions and  
  lattice planes 

Steps:  
1. Find intercepts of plane with 

primary axes . 
2. Take inverse of intercepts. 
3. Multiply by lowest number to 

make all values integers 

Naming conventions:  
1. (h,k,l) is the plane determined 

by procedure to the left 
2. [h,k,l] is the vector normal to 

this plane. 
3. {h,k,l} is the set of all 

symmetrically equivalent (h,k,l) 



How do we classify lattices? 
• One of the successes of crystallography (and why we remember the name 

Bravais) is that it manages to sort the infinite number of potential lattices in 
nature into a finite number categories. 

• What category a lattice is in depends on the group of symmetry operators 
which can be applies which transforms a discrete set of coordinates (i.e. lattice 
points) into itself. 

• The above examples dealt primarily with translational symmetry operators, 
and one way of thinking about primary lattice vectors is the direction and 
distance once can shift every atom to recreate the sample lattice. 

• Additionally, there are a series of point symmetry operators that can be applied 
with an atom at the origin, which also bring the lattice into itself. 

• The collection of point symmetries obeyed by a crystal define its point group 
symmetries. If one includes translation operators and all compound operations, 
this collection of symmetries defines the space group of the lattice. 

 



Point group symmetries 
• The point group symmetries are entirely 

captured by considering: 
• Rotations (2-,3-,4- and 6-fold) about any axis 

• Reflections across any plane 

• Inversion (r → -r) for all lattice points 

• For Bravais lattices (basis can’t break 
symmetry), it turns out there are only 7 
distinct point groups: cubic, tetragonal, 
orthorhombic, monoclinic, triclinic, trigonal 
and hexagonal. 

• One can “derive” them by thinking about 
different ways of distorting a cube. 



Space groups of Bravais lattices 

• Adding translation operators 
brings the total number of 
distinct symmetry groups to 14 
for Bravais lattices in 3D 

• Relaxing spherical symmetry of 
the basis brings the number of 
groups to the much larger (but 
still finite) number of 230. 

• It is still common today 
amongst material physicist to 
refer a lattice’s point group 
symmetry as a starting point 
for discussion → these are 
worth knowing! 



What’s next? 

• Now that have a mathematical handle on how to describe infinite 
lattices of atoms (and the associated jargon), we can move forward to 
discuss how this periodicity affects material properties. In the coming 
weeks, we will discuss: 

1. Interaction of the lattice with light 
2. Collective motion of atoms, and its effect on heat capacity 
3. Motion of electrons in a periodic potential 
4. Lattices of spins and magnetic order 

• For many (most) of these applications, it is more appropriate to talk 
about the discrete Fourier transform of the periodic lattice 

→  i.e. we will use the reciprocal lattice, which will be the topic of next lecture 


