Phys 460
Describing and Classifying
Crystal Lattices

Figure 11.10: A simple cubic lattice



What is a, ' material™?
_crystalline

[

* Regular lattice of atoms

e Each atom has a positively charged
nucleus surrounded by negative electrons

e Electrons are “spinning”
—they act like tiny bar magnets!

 Electrons don't orbit like planets, but are distributed in space
(“orbitals” or “Fermi sea”).

 Neighboring spins and orbitals talk to each other and form
patterns!




Crystallography- Origins in geology

Auguste Bravais
1811-1863

* The atomic theory of atoms has long been proposed to explain sharp angles and flat planes
(“facets”) of naturally occurring crystals.

* Types of different crystal structures were categorized, and formed the foundation of the field of
crystallography.

* In 1848, French physicist (and crystallographer and applied mathematician) demonstrated that there
were only 7 “types” of crystals, embodying 14 distinct “symmetries”.

* This work was verified and greatly expanded upon in the 20t century with the advent of x-ray
diffraction. (e.g. work W. Henry and W. Lawrence Bragg, 1913)



Crystals- a mathematical description

* A crystal is defined to be a repeating, regular array of atomes.

* A proper mathematical description must account for what is
repeating and how it is repeating.

Periodic Structure

* Two parts treated separately: Py P By By
* The fundamental repeating unit is "i;i ﬁ o ﬁ o ﬁ Po
referred to as the basis. 2P > Hw e

 How the basis repeats is specified by
Identifying the underlying lattice.

Lattice

Repeating object

Crystal structure = lattice + basis

o H H 124 H
(Or Bravals Iattlce + baS|S ) Figure 11.3: Any periodic structure can be represented as a lattice of repeating motifs.
om



Bravais lattice

A Bravais lattice (what Simon simply calls a “lattice”) is a mathematical
construct, designed to describe the underlying periodicity of a crystal.

* There are two completely equivalent definitions:

1. A Bravais lattice is a set of all points in space with position vectors, R, of the
form

R=n;a;+n,a,+ n;a,
where a,, a, and a; are any three independent vectors, and n.eZ.

2. A Bravais lattice is an infinite array of discrete points with an arrangement
and orientation which looks exactly the same at each point.

* NB- Definition 2 is handy for first impressions, but definition 1 will
form the foundation for our mathematical treatment.



Properties of a Bravais lattice

e Seemingly general, there are actually a finite set of possible Bravais
lattices (14 in 3D), determined by the underlying symmetries (more
on this later).

* Quick inspection shows that not every lattice is a Bravais lattice! A
good counterexample is the common honeycomb:




Primitive vectors and unit cells

* /[fone is looking at a Bravais lattice, it is possible to describe all points using the
position vector R = n,a, + n,a, + nya;. Here, the vectors a, are known as primitive
lattice vectors and the integers n, are known as lattice indices.

* In general, the repeating volume (area in 2D) in a crystal is known as the unit cell.
For a Bravais lattice, the primitive lattice vectors span the smallest possible
volume, and the resulting unit cell is called the primitive unit cell.

* Neither primitive basis vectors nor the primitive unit cells are unique!
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Figure 11.5: The choice of a unit cell is not unique. All of these unit cells reconstruct the same
Figure 11.2: The choice of primitive lattice vectors for a lattice is not unique. crystal,

A



Properties of primitive unit cells

* If every atom is described by R=n,a, + n,a, + conventonl Primidve

unit cell unit cell

n;a,, then one can show that every primitive I ? . .

cell has exactly one lattice point. L .
* It follows that every primitive cell has exactly N B

the same volume: v = 1/n, where n is point Wigner Seiz
density.

Figure 11.6: Some unit cells for the triangular lattice.

* One can always find a primitive cell by

considering parallelepiped spanned by
primitive basis vectors.

* Another common choice is the Wigner-Seitz
cell, created by bisecting the lines connecting a
lattice point with its nearest neighbors.

*  Most symmetric cell, and volume closest to
lattice point

Figure 4.11

Two possible primitive cells for a two-dimen-
sional Bravais lattice. The parallelogram cell
’ (shaded) is obviously primitive; additional
hexagonal cells are indicated to demonstrate
that the hexagonal cell is also primitive. The
parallelogram can be cut into pieces, which,
when translated through lattice vectors, re-
N assemble to form the hexagon. The translations
for the four regions of the ;)ﬂ{;zllc]()granl are:
/' Region I—CO; Region [1--BO; Region III
A_E), Region IV—no translation.




Bravais lattices in 2D

oblique rectangular hexagonal cubic
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Example: the triangle lattice

(a.k.a. the hexagonal lattice)
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3D Example: the simple cubic lattice

a, = ax
a, =ay
a, =az

Figure 11.10: A simple cubic lattice



3D Example: the body-centered cubic (BCC)
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b R =na, +n.,a, +n,a
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Figure 11.12: Conventional unit cell for the body centered cubic (I) lattice. Left: 3D view. Right: a2 = ay
A plan view of the conventional unit cell. Unlabeled points are both at heights 0 and a.

Figure 4.5

A few sites from a body-centered cubic Bravais
lattice. Note that it can be regarded either as a simple
cubic lattice formed from the points 4 with the points
B at the cube centers, or as a simple cubic lattice
formed from the points B with the points A at the
cube centers. This observation establishes that it is
indeed a Bravais lattice

OR

9
Il
7
>
+
<<
+
N>
—

N | D

~~
>
I
<>
+
N>
~—r

N N|D
~~
>
_|_
<>
I
N>
N



3D Example: the face-centered cubic (FCC)
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Figure 11.14: Conventional unit cell for the face centered cubic (F) lattice. Left: 3D view. Right:
A plan view of the conventional unit cell. Unlabeled points are both at heights 0 and a.

Figure 4.9
A set of primitive vectors, as given in Eq. (4.5), P
for the face-centered cubic Bravais lattice. The g
labeled points are P = a, + a, + a3, O = 2a,,
R=a,+a;,andS = —a; + a, + a,.
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Table 4.1
ELEMENTS WITH THE MONATOMIC FACE-CENTERED

CUBIC CRYSTAL STRUCTURE

ELEMENT a (A) ELEMENT  a(A) ELEMENT  a (A)
Ar 5.26 (4.2 K) Ir 384 Pt 3.92
Ag 4.09 Kr 572(58K)  &-Pu 4.64
Al 4.05 La 530 Rh 3.80
Au 4.08 Ne 443(42K)  Sc 4.54
Ca 5.58 Ni 3.52 Sr 6.08
Ce 5.16 Pb 495 Th 5.08
B-Co 3.55 Pd 3.89 Xe(58K) 6.20
Cu 3.61 Pr 5.16 Yb 5.49

Data in Tables 4.1 to 4.7 are from R. W. G. Wyckoff, Crystal Structures, 2nd ed.,
Interscience, New York, 1963. In most cases, the data are taken at about room tem-
perature and normal atmospheric pressure. For elements that exist in many forms the
stable room temperature form (or forms) is given. For more detailed information, more
precise lattice constants, and rcferenc;:s, the Wyckoff work should be consulted.

/

Table 4.2

ELEMENTS WITH THE MONATOMIC BODY-CENTERED

CUBIC CRYSTAL STRUCTURE

ELEMENT  a(A) ELEMENT  a (A) ELEMENT  a(A)

Ba 5.02 Li 349 (78 K) Ta 3.3]
Cr 2.88 Mo 3.15 Tl 3.88
Cs 6.05 (78 K) Na 423 (5 K) \ 3.02
Fe 2.87 Nb 3.30 \%Y 3.16

K 3.23(5K) Rb 5.59 (5 K)




Lattice with a basis

* A Bravais lattice is a mathematical abstraction. To describe a real crystal
lattice, one needs to dress the Bravais lattice with either a single atom, or a
set of atoms. This repeating set of atoms is called the basis.

* The vectors describing the positions of atoms in a basis, {r.}, are called basis
vectors, and are conventionally presented in terms of fractional steps along
the lattice vectors.

* This allows one to

* Use the same Bravais lattice framework to %6 070 076 o o TR
Describe non-Bravais lattices o° °O° °.° ' °.° © O[.
* To simplify discussion of complex Bravais lattice ©.0.0.° .0 o o
through use of larger conventional unit cells, with 0" %0 %e° %0’ P -
orthonormal lattice vectors

» To describe crystals containing more than one e 115 Lot A periodie st i s dimenons. A st el s ke with e dortd
atom type. '11{:' 'fr:fl'l.":tt'u” et Tt o The T S T deseriotion of the



Example: The honeycomb, using a basis

* Though the honeycomb is clearly not a Bravais lattice, we can still
describe it as a triangle lattice (which is Bravais) , using a two atom
basis

o] o o]
/ Figure 4.17 o o @ ]
/ The honeycomb net, drawn so as e e .
./. ./. ./‘ to emphasize that it is a Bravais -
lattice with a two-point basis. The ° ° ° °
pairs of points joined by heavy (6] e S e
/ ./ ./. /./. / solid lines are identically placed in R ".‘ ............. .-' .
: the primitive cells (parallelograms)
/ 7 of the underlying Bravais lattice ° o o
/./. (] (o] (o] (9]
/ 0/. 0/. R
a

Figure 11.9: The honeycomb from Fig. 11.4 with the two inequivalent points of the unit cell given
different shades. The unit cell is outlined dotted on the left and the corners of the unit cell are
marked with small black dots. On the right the unit cell is expanded and coordinates are given
with respect to the reference point written.



Example: the BCC alttice, using a basis

* The BCC lattice is Bravais, but the primitive lattice vectors are not
perpendicular. It is often desirable to use a cubic Bravais lattice, with
a two atom basis. The repeating (non-primitive) unit cell is known as
the conventional unit cell.

Bravais lattice:

R =na, +n,a, +n;a,;

/N

a,=aX a,=ay a,=aZ

a R H Basis:
a

Figure 11.12: Conventional unit cell for the body centered cubic (1) lattice. Left: 3D view. Right:
A plan view of the conventional unit cell. Unlabeled points are both at heights 0 and a.



Example: the FCC alttice, using a basis

* The same conventional unit cell can be used to describe the FCC

lattice, now with a 4 atom basis:
Bravais lattice:

R =na +n,a, +nN;a,

a/2
(CIRRRRRREEE @ - creeeen () oY _ A _ a
; : a =aXx a,=ay a,=a?
: z 1 2 3
a é ° )
/2 Da/2
\[ ; ; Basis: I, =0
a ) . .......... . .......... ‘
a /2 1
Figure 11.14: Conventional unit cell for the face centered cubic (F) lattice. Left: 3D view. Right: r = — (a —I— a )
A plan view of the conventional unit cell. Unlabeled points are both at heights 0 and a. 2 2 1 2



Example: The diamond lattice
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— Figure 4.18
> L - € Conventional cubic cell of the diamond lattice.

For clarity, sites corresponding to one of the
two interpenetrating face-centered cubic lattices
are unshaded. (In the zincblende structure the
shaded sites are occupied by one kind of ion,
and the unshaded by another.) Nearest-neighbor
bonds have been drawn in. The four nearest
neighbors of each point form the vertices of a
regular tetrahedron.

ik,

Table 4.3
ELEMENTS WITH THE DIAMOND CRYSTAL
STRUCTURE

ELEMENT CUBE SIDE a (A)
C (diamond) 3.57
Si 543
Ge 5.66

o-Sn (grey) 6.49

Described as FCC lattice, with a 2-atom basis:
I =

r, =

0
a/\/\/\
—(X+y+2z
4( y+2)

where a is the length of the conventional cubic cell.
Note: It is equally well described as an FCC with an

8 atom basis (FCC basis plus the same vectors
offset by [a/4,a/4,a/4]).



Sidebar: Coordination number

e Each of the above three lattices is incredibly common, and
characterize different classes of elements. What is the difference?

* In many cases, the important difference is the number of nearest
neighbors, which dictates how many bonds each atom has.

* The number of nearest neighbor bonds for a given crystal lattice is
called the coordination number, and usually denoted Z

cubic, Z=6 BCC, Z=8 FCC, Z=12 diamond, Z=4




Example: hexagonal close packed (hcp

e Simple hexagonal lattice, with a 2 atom basis

e Represents closest approach of a series of hard spheres.

Figure 22 The hexagonal close-packed strue-
ture. The atom positions in this structure do
not constitute a spuce lattice. The space lattice
is simple hexagonal with a basis of two identi-
cal atoms ussociuted with each lattice point.
The lattice purameters a and ¢ are indicated,
where a is in the basal plane and ¢ is the mag-
nitude of the axis oy of Fig. 14

Figure 4.21

View from above of the first two layers in a stack
of cannonballs. The first layer is arranged in a
plane triangular lattice. Balls in the second layer
are placed above alternate interstices in the first
If balls in the third layer are placed directly
above those in the first, at sites of the type
shown in inset (a), balls in the fourth directly
above those in the second, etc., the resulting
structure will be close-packed hexagonal. If,
however, balls in the third layer are placed
directly above those interstices in the first that
were not covered by balls in the second, at sites
of the type shown in inset (b), balls in the fourth
layer placed directly above those in the first,
balls in the fifth directly above those in the
second, etc., the resulting structure will be face-
centered cubic (with the body diagonal of the
cube oriented vertically.)

Figure 21 A close-packed Jayer of spheres is shown, with centers at points marked A. A second and
identical layer of spheres can be placed on top of this, above and paralle] to the plane of the
drawing, with centers over the points murked B, There are two choices for a third layer. It can go
inover A or over C. Iit goes in over A the sequence is ABABAB. . . and the structure is hexagonal
close-packed. If the third layer goes in over C the sequence is ABCABCABC . and the structure
is face-centered eubic,

Table 4.4

ELEMENTS WITH THE HEXAGONAL CLOSE-PACKED CRYSTAL

STRUCTURE

ELEMENT a (A) c cla ELEMENT a (A) c
Be 2.29 3.58 1.56 Os 2.74 432
Cd 298 5.62 1.89 Pr 3.67 592
Ce 3.65 5.96 1.63 Re 2.76 4.46
a-Co 2.51 4.07 1.62 Ru 2.70 4.28
Dy 3.59 5.65 1.57 Sc 3.31 5.27
Er 3.56 5.59 1.57 Tb 3.60 5.69
Gd 3.64 5.78 1.59 Ti 2.95 4.69
He (2 K) 3:57 5.83 1.63 T 3.46 553
Hf 3.20 5.06 1.58 Tm 3.54 5.55
Ho 3.58 5.62 1.57 Y 3.65 5.73
La 3.75 6.07 1.62 Zn 2.66 495
Lu 3.50 5.55 1.59 Zr 323 5.15
Mg 3.21 5.21 1.62
Nd 3.66 5.90 1.61 *Ideal”

c/a

1.58
1.61
1.62
1.59
1.59
1.58
1.59
1.60
1.57
1.57
1.86
1.59

1.63




Common motifs in diatomic materials

sodium chloride (NaCl)

Plan view cesium chloride (CsCl)

M ) 2 Plan view
ru 4 \f

) Y 7Y lattice: cubic P
® L 4

basis :
‘ —~ I & @ Cs 000
L A 4 . A 4 .

Clvatals ()
N

lattice: cubic F
basis :
Na000 @
Clyss ()

z=0layer z="Y2layer
Table 4.5
SOME COMPOUNDS WITH THE SODIUM CHLORIDE STRUCTURE e
apic 4.
avsta () owsta ah) cwvstar a(A) SOME COMPOUNDS WITH THE CESIUM CHLORIDE
LiF 402 RbF 5.64 CaS e STRUCTURE
LiCl 5.13 RbCI 6.58 CaSe 591 i
LiBr 5.50 RbBr 6.85 CaTe 6.34 CRYSTAL a(A CRYSTAL a(A
Lil 6.00 Rbl 7.34 SrO 5.16 a . ( ) . = _(_)
NaF 462 CsF oEh o B CsCl 412 TICl 3.83
NaCl 5.64 AgF 492 SrSe 6.23 :
NaBr 597 AgCl 5.55 SrTe 6.47 CsBr 4.29 TIBr 3.97
Nal 6.47 AgBr 5.77 BaO 5.52 Csl 4.57 T 4.20
KF 5.35 MgO 421 BaS 6.39
KCl 6.29 MgS 5.20 BaSe 6.60
KBr 6.60 MgSe 5.45 BaTe 6.99
KI 7.07 CaO 481
Table 4.7
. SOME COMPOUNDS WITH THE ZINCBLENDE STRUCTURE
Zinceblende (ZnS) Plan vi
an view CRYSTAL a(A) crysTAL  a(A) crRYsTAL  a(A)
15 CuF 4.26 nS 5.41 AlSb 6.13
. . CuCl 5.41 ZnSe 567 GaP 5.45
lattice: cubic F CuBr 5.69 ZnTe 6.09 GaAs 5.65
basis Cul 6.04 cds 5.8 GaSb 6.12
14 Vo Agl 6.47 CdTe 6.48 InP 5.87
Zn 000 © BeS 4.85 HgS 585 InAs 6.04
‘ BeSe 5.07 HgSe 6.08 InSb 6.48
14141
S alava @ BeTe 5.54 HgTe 6.43 SiC 435
A MnS(red)  5.60 AIP 5.45

MnSe 5.82 AlAs 5.62




Sidebar: Inc

lattice planes

Figure 15 This plane intercepts the a,, 85, a, axes at 3a, 2a;, 2, The
reciprocals of these numbers are &, 1, 1. The smallest three integers having
the same ratio are 2, 3, 3, and thus the indices of the plane are (233),

Steps:

1.

Find intercepts of plane with
primary axes .

Take inverse of intercepts.
Multiply by lowest number to
make all values integers

exing cubic directions and

S ~
e ~. l\" <

(200) (1on)

Figure 16 Indices of important planes in a cubic crystal. The plane (200) is paralle) to {100) and to
(100).

Naming conventions:

1.

(h,k,1) is the plane determined
by procedure to the left

[h,k,I] is the vector normal to
this plane.

{h,k,1} is the set of all
symmetrically equivalent (h,k,l)



How do we classity lattices?

* One of the successes of crystallography (and why we remember the name
Bravais) is that it manages to sort the infinite number of potential lattices in
nature into a finite number categories.

* What category a lattice is in depends on the group of symmetry operators
which can be applies which transforms a discrete set of coordinates (i.e. lattice
points) into itself.

* The above examples dealt primarily with translational symmetry operators,
and one way of thinking about primary lattice vectors is the direction and
distance once can shift every atom to recreate the sample lattice.

e Additionally, there are a series of point symmetry operators that can be applied
with an atom at the origin, which also bring the lattice into itself.

* The collection of point symmetries obeyed by a crystal define its point group
symmetries. If one includes translation operators and all compound operations,
this collection of symmetries defines the space group of the lattice.



are the point-group symine-
tries of Bravais lattices be-
longing to the seven crystal
systems: (a) cubic: (b) te-

Point group symmetries EF S

o \
\\fﬂ_/)/

* The point group symmetries are entirely ; ysens: (0 i, ©) e
captured by considering: @ VD el @ s
* Rotations (2-,3-,4- and 6-fold) about any axis T
» Reflections across any plane i
* Inversion (r — -r) for all lattice points N

* For Bravais lattices (basis can’t break
symmetry), it turns out there are only 7
distinct point groups: cubic, tetragonal, : o b
orthorhombic, monoclinic, triclinic, trigonal w
and hexagonal.

* One can “derive” them by thinking about T i o R o o e s _proou

different ways of distorting a cube. T 4 :




Space groups of Bravais lattices

* Adding translation operators
brings the total number of
distinct symmetry groups to 14
for Bravais lattices in 3D

* Relaxing spherical symmetry of
the basis brings the number of
groups to the much larger (but
still finite) number of 230.

e |t is still common today
amongst material physicist to
refer a lattice’s point group
symmetry as a starting point
for discussion — these are
worth knowing!

Figure 11.15: Unit cells for All of the Three Dimensional Bravais Lattice Types.



What’s next?

* Now that have a mathematical handle on how to describe infinite
lattices of atoms (and the associated jargon), we can move forward to
discuss how this periodicity affects material properties. In the coming
weeks, we will discuss:

1. Interaction of the lattice with light

2. Collective motion of atoms, and its effect on heat capacity
3. Motion of electrons in a periodic potential

4. Lattices of spins and magnetic order

* For many (most) of these applications, it is more appropriate to talk
about the discrete Fourier transform of the periodic lattice
— i.e. we will use the reciprocal lattice, which will be the topic of next lecture



